Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecol Lett ; 27(3): e14401, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38468439

RESUMO

Ecosystems that are coupled by reciprocal flows of energy and nutrient subsidies can be viewed as a single "meta-ecosystem." Despite these connections, the reciprocal flow of subsidies is greatly asymmetrical and seasonally pulsed. Here, we synthesize existing literature on stream-riparian meta-ecosystems to quantify global patterns of the amount of subsidy consumption by organisms, known as "allochthony." These resource flows are important since they can comprise a large portion of consumer diets, but can be disrupted by human modification of streams and riparian zones. Despite asymmetrical subsidy flows, we found stream and riparian consumer allochthony to be equivalent. Although both fish and stream invertebrates rely on seasonally pulsed allochthonous resources, we find allochthony varies seasonally only for fish, being nearly three times greater during the summer and fall than during the winter and spring. We also find that consumer allochthony varies with feeding traits for aquatic invertebrates, fish, and terrestrial arthropods, but not for terrestrial vertebrates. Finally, we find that allochthony varies by climate for aquatic invertebrates, being nearly twice as great in arid climates than in tropical climates, but not for fish. These findings are critical to understanding the consequences of global change, as ecosystem connections are being increasingly disrupted.


Assuntos
Ecossistema , Rios , Animais , Humanos , Cadeia Alimentar , Invertebrados , Peixes
2.
PLoS One ; 18(4): e0284590, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37079602

RESUMO

Disturbances to forested watersheds often result in increases of nutrients and light to nearby streams. Such changes are generally expected to produce a shift to a more autotrophic aquatic ecosystem, with measurable increases in algae, and associated implications for food webs and fisheries. Although this paradigm is widely established, results from our 10-year study (2007-2016) in 12 headwater streams and four sites downstream in the Trask River Watershed (Oregon, USA), did not concur. In 2012, one watershed was thinned, three were clearcut harvested with variable buffers and three with uniform riparian buffers. After harvest, light to the stream surface significantly increased at the three watersheds with variable buffers while dissolved inorganic nitrogen (DIN) significantly increased in all of the clearcut harvested streams. Despite the increase in DIN and light, algal standing stocks and chlorophyll a concentrations did not significantly increase. The common assumption of increased autotrophic responses in stream food webs following increases of nitrogen and light was not supported here. We postulate the co-limitation of nutrients, driven by low phosphorus concentrations, which unlike DIN did not increase post-harvest, and the characteristics of the algal community, which were dominated by low light adapted diatoms rather than green algae, contributed to our findings of no responses for standing stocks of epilithic algae or concentrations of chlorophyll a. The inclusion of multiple statistical analyses provided more certainty around our findings. This study documents responses to current forest practices and provides cautionary information for management and restoration activities aiming to increase fish abundance and standing stocks by opening riparian canopies and adding nutrients.


Assuntos
Ecossistema , Nitratos , Animais , Nitratos/análise , Clorofila A , Compostos Orgânicos , Florestas , Nitrogênio/análise
3.
Aquat Toxicol ; 250: 106242, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35878488

RESUMO

Cyanobacterial blooms sometimes create secondary metabolites that can be transferred between trophic levels and accumulate in fish, but little is known about what time of year fish are most susceptible. Here, we examine microcystin in the muscle, liver, and kidney of bluegill and largemouth bass from an agricultural reservoir over 12 months. We identify which fish characteristics and water parameters best explain microcystin accumulation in fish tissues. Microcystin in bluegill was significantly higher than largemouth bass. In both species, microcystin was highest in livers (bluegill mean = 57.6 ng g - 1, largemouth bass mean = 71.8 ng g - 1 wet weight [ww]), then kidneys (bluegill mean = 27.1, largemouth bass mean = 22.7 ng g - 1 ww), followed by muscles (bluegill mean = 7.6, largemouth bass mean = 5.7 ng g - 1 ww). Adult bluegill feed on benthic macroinvertebrates and zooplankton, which may explain their higher microcystin concentrations compared to largemouth bass, which are primarily piscivorous. Harvest date emerged as the best predictor of microcystin in muscles and kidneys, with the highest concentrations occurring in April. Microcystin in water also emerged as a significant predictor, albeit much lower than harvest date, suggesting that low but persistent microcystin concentrations in water may result in accumulation of this cyanotoxin in fish. This study is the first to examine microcystin in fish from the North American Great Plains and one of only 5 studies that investigate microcystin in bluegill and largemouth bass. Additional investigation into the relationship between cyanobacteria and fish health is warranted, especially during spring when fish microcystin concentrations were highest.


Assuntos
Bass , Perciformes , Poluentes Químicos da Água , Animais , Bass/metabolismo , Microcistinas/metabolismo , Perciformes/metabolismo , Água , Poluentes Químicos da Água/toxicidade
4.
Ecotoxicology ; 31(5): 761-781, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35438434

RESUMO

Largemouth bass (LMB, 265-475 mm) were collected to document whether changes in fish condition and reproductive status influenced the concentration of total mercury (Hg) and selenium (Se) in axial muscle by season and sex. The fatty acid (FA) composition of fish was also examined to describe seasonal and sexual differences and identify whether arachidonic acid (ARA) could be used as a biomarker of Hg toxicity. There was a trend for females to have lower (p < 0.062) Se concentrations than males. The concentration of Se for females during spring (mean ± SD, 686 ± 51 ng/g dw) was 15% lower than males (806 ± 67 ng/g dw). Lower Se concentrations in females than males continued through summer and fall. Concentration of Hg for females during spring (152 ± 39 ng/g ww) was also 59% lower than males (373 ± 303 ng/g ww), but the difference was not significant (p > 0.2). The percent of lipids was greatest in fall and winter (3%) and comprised primarily of omega-3 fatty acids (35 g/100 g lipid). Fish condition as measured by percent lipids and relative weight was negatively (p < 0.02) related to Hg concentration for females and males. Lipid content for both sexes was also positively (p < 0.05) related to the Se:Hg ratio. Relative weight was positively related to the Se:Hg ratio for females during all seasons (p = 0.014), but only during spring and summer for males (p < 0.007). A low Se:Hg value was associated with an elevation in ARA for both sexes and a reduced hepatosomatic index in males. Data suggested that females transferred muscle stores of Se and Hg to developing oocytes during spring. This study generates hypotheses regarding the physiological drivers of seasonal and sexual variability in Hg, Se, and FA in LMB that may be applicable to other species and have implications for fisheries health and management.


Assuntos
Bass , Doenças dos Peixes , Mercúrio , Selênio , Poluentes Químicos da Água , Animais , Monitoramento Ambiental , Ácidos Graxos , Feminino , Peixes , Masculino , Mercúrio/análise , Mercúrio/toxicidade , Músculos/química , Estações do Ano , Selênio/análise , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
5.
Glob Chang Biol ; 28(1): 98-114, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34706120

RESUMO

Dissolved organic carbon (DOC) and nitrogen (DON) are important energy and nutrient sources for aquatic ecosystems. In many northern temperate, freshwater systems DOC has increased in the past 50 years. Less is known about how changes in DOC may vary across latitudes, and whether changes in DON track those of DOC. Here, we present long-term DOC and DON data from 74 streams distributed across seven sites in biomes ranging from the tropics to northern boreal forests with varying histories of atmospheric acid deposition. For each stream, we examined the temporal trends of DOC and DON concentrations and DOC:DON molar ratios. While some sites displayed consistent positive or negative trends in stream DOC and DON concentrations, changes in direction or magnitude were inconsistent at regional or local scales. DON trends did not always track those of DOC, though DOC:DON ratios increased over time for ~30% of streams. Our results indicate that the dissolved organic matter (DOM) pool is experiencing fundamental changes due to the recovery from atmospheric acid deposition. Changes in DOC:DON stoichiometry point to a shifting energy-nutrient balance in many aquatic ecosystems. Sustained changes in the character of DOM can have major implications for stream metabolism, biogeochemical processes, food webs, and drinking water quality (including disinfection by-products). Understanding regional and global variation in DOC and DON concentrations is important for developing realistic models and watershed management protocols to effectively target mitigation efforts aimed at bringing DOM flux and nutrient enrichment under control.


Assuntos
Matéria Orgânica Dissolvida , Rios , Carbono , Ecossistema , Nitrogênio/análise
6.
Environ Sci Technol ; 54(23): 15376-15384, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33175518

RESUMO

Emergent macrophyte species selection is critical for the effectiveness of nature-based engineered solutions aiming to address excess nutrient concentrations in freshwater ecosystems. Yet, the mechanisms with which macrophytes enhance nutrient retention need to be further understood. Here, we compared nutrient retention among 12 artificial flumes fed with effluents from a wastewater treatment plant and subjected to four treatments: absence of macrophytes (control) and presence of three different macrophyte species (Iris pseudacorus L., Phragmites australis L., and Schoenoplectus lacustris L.). We estimated the net and gross nutrient uptake based on the longitudinal profiles of ambient concentrations and on pulse injections of ammonium (NH4+) and soluble reactive phosphorus. Further, we investigated the influence of subsurface hydrological retention, attributed to the architectural differences in the roots of these macrophytes, on nutrient retention. Results showed a species-specific effect of macrophytes on nutrient retention and confirmed root-associated subsurface hydrological retention as a driving factor. Schoenoplectus showed both high net and gross NH4+ uptake, thereby being the most effective species to address N loading, compared to Iris and Phragmites. This work contributes to improve our mechanistic understanding of the role of emergent macrophytes on nutrient retention in aquatic environments.


Assuntos
Ecossistema , Nitrogênio , Água Doce , Nutrientes , Fósforo
7.
Sci Total Environ ; 599-600: 1667-1676, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28535595

RESUMO

Wastewater treatment plant (WWTP) effluents are sources of dissolved organic carbon (DOC) and inorganic nitrogen (DIN) to receiving streams, which can eventually become saturated by excess of DIN. Aquatic plants (i.e., helophytes) can modify subsurface water flowpaths as well as assimilate nutrients and enhance microbial activity in the rhizosphere, yet their ability to increase DIN transformation and removal in WWTP-influenced streams is poorly understood. We examined the influence of helophytes on DIN removal along subsurface water flowpaths and how this was associated with DOC removal and labile C availability. To do so, we used a set of 12 flow-through flumes fed with water from a WWTP effluent. The flumes contained solely sediments or sediments with helophytes. Presence of helophytes in the flumes enhanced both DIN and DOC removal. Experimental addition of a labile C source into the flumes resulted in a high removal of the added C within the first meter of the flumes. Yet, no concomitant increases in DIN removal were observed. Moreover, results from laboratory assays showed significant increases in the potential denitrifying enzyme activity of sediment biofilms from the flumes when labile C was added; suggesting denitrification was limited by C quality. Together these results suggest that lack of DIN removal response to the labile C addition in flumes was likely because potential increases in denitrification by biofilms from sediments were counterbalanced by high rates of mineralization of dissolved organic matter. Our results highlight that helophytes can enhance DIN removal in streams receiving inputs from WWTP effluents; and thus, they can become a relevant bioremediation tool in WWTP-influenced streams. However, results also suggest that the quality of DOC from the WWTP effluent can influence the N removal capacity of these systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...